首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7723篇
  免费   549篇
  国内免费   720篇
  8992篇
  2024年   25篇
  2023年   103篇
  2022年   259篇
  2021年   413篇
  2020年   303篇
  2019年   352篇
  2018年   328篇
  2017年   272篇
  2016年   360篇
  2015年   504篇
  2014年   569篇
  2013年   622篇
  2012年   766篇
  2011年   652篇
  2010年   369篇
  2009年   370篇
  2008年   394篇
  2007年   333篇
  2006年   292篇
  2005年   244篇
  2004年   209篇
  2003年   179篇
  2002年   155篇
  2001年   153篇
  2000年   117篇
  1999年   103篇
  1998年   69篇
  1997年   72篇
  1996年   72篇
  1995年   54篇
  1994年   51篇
  1993年   31篇
  1992年   42篇
  1991年   21篇
  1990年   25篇
  1989年   19篇
  1988年   16篇
  1987年   16篇
  1986年   11篇
  1985年   18篇
  1984年   9篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1966年   1篇
  1965年   2篇
排序方式: 共有8992条查询结果,搜索用时 46 毫秒
51.
Jiang  Y.  Li  Y. M.  Wang  S. D.  Cui  G. W.  Wang  H. 《Russian Journal of Plant Physiology》2019,66(3):469-476
Russian Journal of Plant Physiology - To explore proteomic characters of Kunitz-type trypsin inhibitors (KTIs) deleted soybean (Glycine max (L.) Merr.), seeds without KTIs and its female parent...  相似文献   
52.
Converging evidence indicates that SOD1 aggregation is a common feature of mutant SOD1-linked fALS, and seems to be directly related to the gain-of-function toxic property. However, the mechanism inducing the aggregation is not understood. To study the contribution of oxidative modification of cysteine residues in SOD1 aggregation, we systematically examined the redox state of SOD1 cysteine residues in the G37R transgenic mouse model at different stages of the disease and under oxidative stress induced by H2O2. Our data suggest that under normal circumstance, cysteine 111 residue in SOD1 is free; however, under oxidative stress, it is prone to oxidative modification by providing the thiolate anion (S−). With the progression of the disease, increased levels of oxidative insults facilitated the oxidation of thiol groups of cysteine residues; human mutant SOD1 could generate an upper shift band in reducing SDS-PAGE, which turned out to be a Cys111-peroxidized SOD1 species. We also detected the formation of SOD1 multimers at different stages of the disease, and found that accumulated oxidative stress facilitated the formation of aggregates, which were not mediated by disulfide bond. This oxidative modification of cysteine 111 therefore promotes the formation of disulfide bond-independent aggregation of SOD1.  相似文献   
53.
Human brains retain discrete populations of micro RNA (miRNA) species that support homeostatic brain gene expression functions; however, specific miRNA abundance is significantly altered in neurological disorders such as Alzheimer disease (AD) when compared with age-matched controls. Here we provide evidence in AD brains of a specific up-regulation of an NF-kappaB-sensitive miRNA-146a highly complementary to the 3'-untranslated region of complement factor H (CFH), an important repressor of the inflammatory response of the brain. Up-regulation of miRNA-146a coupled to down-regulation of CFH was observed in AD brain and in interleukin-1beta, Abeta42, and/or oxidatively stressed human neural (HN) cells in primary culture. Transfection of HN cells using an NF-kappaB-containing pre-miRNA-146a promoter-luciferase reporter construct in stressed HN cells showed significant up-regulation of luciferase activity that paralleled decreases in CFH gene expression. Treatment of stressed HN cells with the NF-kappaB inhibitor pyrollidine dithiocarbamate or the resveratrol analog CAY10512 abrogated this response. Incubation of an antisense oligonucleotide to miRNA-146a (anti-miRNA-146a; AM-146a) was found to restore CFH expression levels. These data indicate that NF-kappaB-sensitive miRNA-146a-mediated modulation of CFH gene expression may in part regulate an inflammatory response in AD brain and in stressed HN cell models of AD and illustrate the potential for anti-miRNAs as an effective therapeutic strategy against pathogenic inflammatory signaling.  相似文献   
54.
Kun Guo  Le Kang  Feng Cui 《Insect Science》2017,24(3):431-442
Host alternation, an obligatory seasonal shifting between host plants of distant genetic relationship, has had significant consequences for the diversification and success of the superfamily of aphids. However, the underlying molecular mechanism remains unclear. In this study, the molecular mechanism of host alternation was explored through a large‐scale gene expression analysis of the mealy aphid Hyalopterus persikonus on winter and summer host plants. More than four times as many unigenes of the mealy aphid were significantly upregulated on summer host Phragmites australis than on winter host Rosaceae plants. In order to identify gene candidates related to host alternation, the differentially expressed unigenes of H. persikonus were compared to salivary gland expressed genes and secretome of Acyrthosiphon pisum. Genes involved in ribosome and oxidative phosphorylation and with molecular functions of heme–copper terminal oxidase activity, hydrolase activity and ribosome binding were potentially upregulated in salivary glands of H. persikonus on the summer host. Putative secretory proteins, such as detoxification enzymes (carboxylesterases and cytochrome P450s), antioxidant enzymes (peroxidase and superoxide dismutase), glutathione peroxidase, glucose dehydrogenase, angiotensin‐converting enzyme, cadherin, and calreticulin, were highly expressed in H. persikonus on the summer host, while a SCP GAPR‐1‐like family protein and a salivary sheath protein were highly expressed in the aphids on winter hosts. These results shed light on phenotypic plasticity in host utilization and seasonal adaptation of aphids.  相似文献   
55.
Recent advances in the efficiency of crystalline silicon (c‐Si) solar cells have come through the implementation of passivated contacts that simultaneously reduce recombination and resistive losses within the contact structure. In this contribution, low resistivity passivated contacts are demonstrated based on reduced titania (TiOx) contacted with the low work function metal, calcium (Ca). By using Ca as the overlying metal in the contact structure we are able to achieve a reduction in the contact resistivity of TiOx passivated contacts of up to two orders of magnitude compared to previously reported data on Al/TiOx contacts, allowing for the application of the Ca/TiOx contact to n‐type c‐Si solar cells with partial rear contacts. Implementing this contact structure on the cell level results in a power conversion efficiency of 21.8% where the Ca/TiOx contact comprises only ≈6% of the rear surface of the solar cell, an increase of 1.5% absolute compared to a similar device fabricated without the TiOx interlayer.  相似文献   
56.
Alzheimer’s disease (AD) is a progressive, neurodegenerative disease. Accumulating evidence suggests that inflammatory response, oxidative stress and autophagy are involved in amyloid β (Aβ)-induced memory deficits. Silibinin (silybin), a flavonoid derived from the herb milk thistle, is well known for its hepatoprotective activities. In this study, we investigated the neuroprotective effect of silibinin on Aβ25-35-injected rats. Results demonstrated that silibinin significantly attenuated Aβ25-35-induced memory deficits in Morris water maze and novel object-recognition tests. Silibinin exerted anxiolytic effect in Aβ25-35-injected rats as determined in elevated plus maze test. Silibinin attenuated the inflammatory responses, increased glutathione (GSH) levels and decreased malondialdehyde (MDA) levels, and upregulated autophagy levels in the Aβ25-35-injected rats. In conclusion, silibinin is a potential candidate for AD treatment because of its anti-inflammatory, antioxidant and autophagy regulating activities.  相似文献   
57.
58.
As obligate chemolithotrophs, ammonia-oxidizing bacteria (AOB) grow very slowly and are known to be extremely sensitive to a wide variety of inhibitors. Since it is generally accepted that inhibition of ammonia oxidation by AOB results in a total failure of nitrogen removal, it is necessary to develop a method to detect inhibitors of ammonia oxidation in wastewater. Since ammonia oxidation accompanies oxygen consumption, ammonia oxidation can be easily evaluated by measuring oxygen consumption rate using a dissolved oxygen (DO) probe. In this study, a rapid and simple respirometric biosensor using the pure culture of Nitrosomonas europaea was developed. N. europaea was cultivated in a continuous fermentor operating at the dilution rate of 0.008 h(-1) to obtain physiologically constant cells and was immobilized onto the dialysis membrane through filtration. DO, determined by the biosensor, started to increase 30 s later after ammonia oxidation inhibitor was fed, and a new steady-state DO was obtained in 10-30 min. For this DO profile, steady-state kinetics was applied to evaluate ammonia oxidation efficiency. The concentration of a toxic compound causing 50% decrease of oxygen-consumption activity (EC50) was determined for different chemicals. The EC50 values obtained with the biosensor (0.018 mg l(-1) for allylthiourea, 0.027 mg l(-1) for thioacetamide, 1.10 mg l(-1) for phenol and 0.0 1mg l(-1) for thiourea) indicated that the developed biosensor was highly sensitive to a variety of the inhibitors. It was also shown that the biosensor is applicable for on-line real time monitoring.  相似文献   
59.
Nod, a nonmotile kinesin-like protein, plays a critical role in segregating achiasmate chromosomes during female meiosis. In addition to localizing to oocyte chromosomes, we show that functional full-length Nod-GFP (Nod(FL)-GFP) localizes to the posterior pole of the oocyte at stages 9-10A, as does kinesin heavy chain (KHC), a plus end-directed motor. This posterior localization is abolished in grk mutants that no longer maintain the microtubule (MT) gradient in the oocyte. To test the hypothesis that Nod binds to the plus ends of MTs, we expressed and purified both full-length Nod (Nod(FL)) and a truncated form of Nod containing only the motor-like domain (Nod318) from Escherichia coli and assessed their interactions with MTs in vitro. Both Nod(FL) and Nod318 demonstrate preferential binding to the ends of the MTs, displaying a strong preference for binding to the plus ends. When Nod318-GFP:MT collision complexes were trapped by glutaraldehyde fixation, the preference for binding to plus ends versus minus ends was 17:1. Nod(FL) and Nod318 also promote MT polymerization in vitro in a time-dependent manner. The observation that Nod is preferentially localized to the plus ends of MTs and stimulates MT polymerization suggests a mechanism for its function.  相似文献   
60.
利用根癌农杆菌介导法将反义磷脂酶Dγ基因 (PLDγ)转入白三叶草。建立了白三叶草的继代及高频再生系统 ,对传统农杆菌侵染方法进行了改良 ,通过抗生素筛选获得大量抗性植株。对抗性植株进行了PCR和PCR Southern杂交鉴定 ,证实PLDγ基因已整合入白三叶草核基因组中。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号